

An Introduction to PixInsight
By Carlos Milovic, Core PTeam Member
East Coast Conference on Astronomical Imaging / August 2006

The Timeline of PixInsight

 Created by Juan Conejero, a Spanish professional software developer
and astrophotographer.

 A predecessor: The SGBNR application for noise reduction, first
published in 2001.

 The PixInsight project started in 2003.

 PixInsight LE (freeware limited edition) was released in 2004/2005.

 PixInsight Standard (commercial full edition, open/modular
architecture) is currently in its final development stages.

Cover image: Deep Southern Orion, by Carlos Milovic (PTeam).
Three 25-minute exposures on Provia 400F film +2, with a 135 mm Canon FD lens @ f/4.
Fully processed in PixInsight.

Back cover image: NGC 7000, by José Luis Lamadrid and Vicent Peris (PTeam).
Five hours exposure with a modified Canon 20D camera on a Takahashi FS102.
Fully processed in PixInsight.

Main Goals

 High processing power for the advanced imager.

 Rigorous, accurate implementations of efficient processing
algorithms and techniques.

 Full control on every applied process.

 Versatile and powerful graphical and command-line user
interfaces.

 An image processing platform developed by
astrophotographers for astrophotographers.

Advanced Image Processing
State-of-the-art implementations of avant garde processing techniques.
A few examples:

 Multiscale processing. À trous wavelet transform, morphological wavelet
transform. Planned implementations of curvelet and ridgelet transforms.

 Background modelization. Manual and automatic background
extraction tools for high precision vignetting and gradient correction.

 PixelMath interface with proprietary expression parser/interpreter,
including more than 35 built-in functions and a comprehensive set of
arithmetic, logical, bitwise and relational operators.

 Noise reduction. High-performance multiscale and contrast-driven
adaptive algorithms.

 Regularized deconvolution. Richardson-Lucy and Van Cittert
regularized deconvolution algorithms.

What Is PixInsight?
Quick answer: An image processing software application.
However, it is not just another image processing application:

 Modular, open architecture: The entire processing functionality and file
format support are provided by external, installable modules.

 Free and readily available software development framework to
build PixInsight modules: PixInsight Class Library (PCL).

 Highly portable to Microsoft Windows, Linux/UNIX, and Mac OS X.

 Five data types supported transparently (available to all processes):
8, 16, and 32-bit integers, plus 32 and 64-bit floating point.

 Advanced masking system.

 Object-oriented graphical interface with multiple previews, real-
time preview, and color management through ICC profiles.

 Command-line interface with scripting support.

 Parallel processing: Advanced support for multi-processor, multi-core
and HyperThreading technologies.

Open, Modular Architecture

 The user can freely install/uninstall
PixInsight modules.

 PixInsight’s modular architecture is much
more versatile, powerful and flexible than
a traditional plug-ins system.

Core PixInsight Application

Graphical User Interface

Processing Infrastructure

Command-Line Interface

Low-Level API

Secure Module Interface

PixInsight Module A

Process 1

PixInsight Module B

Interface 1

Process 3

Process 2 Interface 2

Interface 3

PixInsight Module C

File Format 1 File Format 2

Portability of the PixInsight/PCL Platform

 Microsoft Windows 2000/2003/XP/Vista

 Linux and main UNIX variants

 Macintosh OS X

 64-bit versions of all supported operating systems

The keys of PixInsight’s high portability:

 Core application based on PCL and Trolltech’s Qt framework.

 PCL is fully hardware and O.S. independent code.

Five Data Types
Use the most adequate data format for each processing task:

 Unsigned Integers: 8-bit, 16-bit, 32-bit

 IEEE 754 Floating Point: 32-bit and 64-bit

 PCL support for complex-valued floating-point images

Transparent data type support:

 All processes can work with all data types without distinction.
The only limits are imposed by roundoff errors inherent to each
numerical format.

 From the developer’s perspective, a single source code works
for all data types, thanks to PCL’s advanced template support.

The 64-bit floating point format provides a huge working space of 1015
discrete values, ideal to handle extremely large dynamic ranges.

A 64-bit High Dynamic Range Experiment

The scene shows a 20-watt halogen lamp
and a Takahashi FS102 objective.

A sequence of exposures of 1, ¼, 1/15, 1/60,
1/200, 1/400, 1/1600 and 1/6400 seconds
were taken with a modified Canon 20D
camera @ 200 ISO through a 28 mm lens
working at f/13.

Experiment conducted by Vicent Peris, core
PTeam member.

1 second 1/6400 s

1/60 s

A 64-bit High Dynamic Range Experiment

Upper left: The whole set of exposures from 1 to 1/6400
seconds were integrated linearly as a 64-bit floating-

point image, and the result was stretched with a non-
linear histogram transform (0.00001 midtones balance).

Upper right: A wavelet transform was applied to extract
small-scale structures.

Lower right: small scales were enhanced and reinserted
to form a combined image representing all image

structures throughout the whole original dynamic range.

HDR combination

HDR, wavelet processed

Small scales

A 64-bit High Dynamic Range Experiment

Two detail crops of the processed high-
dynamic range, 64-bit floating point
combined image.

Note the visibility of details on the lamp
and the readable text over the closing
ring of the FS102 objective.

To combine the whole set of exposures
without data loss, at least 25,000,000
discrete sample values are required.

The 32-bit floating point format provides
no more than 10,000,000 sample values.

This example requires 64-bit floating point
or 32-bit integers. Both formats are

transparently supported by PixInsight.

Masking System

Masks play a key role in the advanced image processing workflow.
A mask can be used to:

 Apply processes selectively to image structures of interest.

 Protect selected image structures from the adverse effects
of some processes.

In PixInsight, any image can work as a mask for an unlimited
number of images: the simplest, most efficient and versatile
masking system.

Masking Example: Star Protection Masks

Star protection mask
Image structures within a prescribed range of scales
have been isolated by means of a special wavelet-based technique.

With the star protection mask active
we can apply for example a wavelet
transform to sharpen the image without
burning out stars and other small-scale,
bright structures.

Masking Example: Selective Hue/Contrast

Mask Image

Original Image
Preview of CurvesTransform

Object-Oriented Graphical User Interface

A novel, flexible user interface paradigm:

 Graphical interface composed by independent, self-sufficient
and self-contained elements (objects) with mutual interaction.

 Images and processes are living objects that can be handled
and managed independently through specific interface
resources.

 Processes can be defined independently of images. To
define a process, there is no need to have an image opened.

 PixInsight follows a strict object-oriented design not just
internally, but also externally, in its user interface.

PixInsight’s Graphical User Interface

Process Containers

 Ordered sequences of processes.

 A process container is also a process, so a process container
can contain other process containers, forming a tree structure.

 Process containers can be freely edited: individual processes
can be added, removed, extracted and rearranged.

 Individual processes can be assigned arbitrary textual information.
This permits to document an entire processing workflow.

Process containers are versatile objects to store, manage
and organize processing strategies. They make it extremely
easy to share our procedures with others, and to reuse them
in multiple projects.

The ProcessContainer Interface

Automatically generated script

Processes in this container

Edit controls
(move, enable/disable, delete elements)

User-defined information

Processing Histories

 Every image has an associated processing history in
PixInsight.

 A processing history is a special, read-only process container.

 A processing history can be traversed arbitrarily. The user has
random access to all processing steps, and the platform
provides unlimited undo/redo capacity; the only limit is the
available hard disk space.

 Processing histories can be converted into normal, editable process
containers. Thanks to this feature, any procedure applied to an
image is fully reusable in PixInsight, and the user has full
control over every step of the processing workflow.

The History Explorer Window

Generated script

User-defined information

Applied processes

Current image state

Image Containers

 PixInsight Standard introduces a new class of container objects:
Image containers are ordered sequences of references to
images.

 The elements of an image container can be references to either
disk files or opened images.

 Any process, including of course process containers, can be
applied to an image container. Applied processes execute
sequentially on each member of an image container.

 As disk images are being processed in an image container,
resulting images are written to prescribed destination
folders and file names, which can be fully customized.

 Image containers provide a flexible, easy-to-use and intuitive way to
implement batch processing in PixInsight.

Process Icons

 A process icon encapsulates a process under a graphical
envelope that can be freely managed within PixInsight’s core
graphical environment.

 Process icons are living objects pertaining to the core
application’s workspace.

 Process icons can be dragged, organized, renamed, copied,
deleted, applied to images and image containers, and
saved to special disk files (PSM files).

 PSM files are the main way PixInsight users can share and
reuse their processing work.

The implementation of process icons in PixInsight has been
widely acclaimed as a fresh, innovative contribution to
graphical interfaces for imaging applications.

Process Icons and Image Icons

Image icon

Dragging a process
icon to an image

Process icons

Previews

 Previews are temporary subimages that the user can freely define
over any image in PixInsight. An unlimited number of previews
can be defined for any image.

 Previews are mainly used to try out any number of processes
without modifying their parent images.

 Previews have their own processing histories, exactly like
independent images, which can be extracted as process containers.

 When a process is applied to a preview, the whole work is
performed in RAM without accessing swap disk files, which
is extremely fast.

 Previews can be easily converted into independent images.

By defining relatively small previews over regions of special interest,
the intense trial/error work required for virtually any nontrivial image
processing task can be carried out quickly and with a high degree of
flexibility and accuracy.

Previews

Previews

View Selector Tray

View selectors

Selected preview

Real-Time Preview

 PixInsight’s Real-Time Preview is a sophisticated GUI resource that
provides instant feedback while the user adjusts parameters in
a processing interface.

 The Real-Time Preview interface allows quick before/after
comparisons without having to recalculate a complex
process. Calculate once, preview as many times as you want,
quickly and easily.

 When previewing masked processes, you can easily toggle
between previewing the effects of a process with and
without the mask active. Again, this is done without requiring
recalculation.

 Developers can optimize real-time previewing functionality for their
newly authored processes with an easy-to-use, efficient interface
provided by the PCL.

The Real-Time Preview Window

Quick before/after comparison

Quick with/without mask comparison

Individual RGB channel preview

Preview quality

Quick jump to client interface

Standard real-time preview
activation button

Real-Time Preview client interface

Command-Line Interface

 The best of two worlds: A powerful command-line interface
coexisting with a high-end GUI.

 A large set of emulated UNIX commands (cd, mkdir, ls, cpy, alias,
and so on) available on all supported platforms.

 Comprehensive set of internal commands giving access to the
entire core application functionality. Examples: new, open,
close, setid, duplicate, newpreview, exit, etc.

 Every installed process can be invoked from the command
line. This functionality is automatically provided by the core PixInsight
application.

 Developers can (and are encouraged to) implement specialized
command-line functionality for newly authored processes.

 Support for script files. A proprietary scripting language can be
used to define processes and sequences of command-line actions.

The Processing Console Window

All processes can be
paused and/or cancelled in
PixInsight with the Pause/Abort
button on the Processing
Console window.

Invoking a process from the command line.
In this example, the FastRotation process is being used
to rotate an image 90 degrees counter-clockwise.

All processes use the console to
provide feedback and progress
information. This standard behavior
allows providing very accurate and
exhaustive information to the user.

Processing Example

Vignetting and Sky Gradient Correction
DynamicBackgroundExtraction and PixelMath in PixInsight Standard

Gamma Cygni medium format film image
courtesy of Thomas W. Earle, PTeam

DBE samples defined
over free sky background
image areas.

Samples must be carefully defined on difficult
images. A sophisticated rejection algorithm avoids
the contributions of stars and other outliers to the
generated background model.

The generated DBE background model is
subtracted from the original image. The
PixelMath interface accepts mathematical
expressions in algebraic notation.

Corrected image. DBE synthetic background
models correct for uneven illumination and provide
robust chromatic correction. If the user defines a
reasonably good set of samples, DBE models
neutralize the background automatically.

Processing Example

Processing a High-Resolution Jupiter Image
ATrousWaveletTransform in PixInsight Standard

Raw Jupiter image data courtesy of Christopher Go
The complete tutorial is available on our website:
http://pleiades-astrophoto.com/tutorials/

http://pleiades-astrophoto.com/tutorials/
http://pleiades-astrophoto.com/tutorials/

Combining individual
RGB channels with
ChannelCombination

 Channel alignment
with ChannelMatch

Initial multiscale
analysis by inspecting
individual wavelet layers

Multiscale luminance
processing with
ATrousWaveletTransform

 Chrominance processing,
including noise reduction.

LRGB combination of the processed luminance and
chrominance, including color saturation enhancement
plus additional chrominance noise reduction.

Additional improvement of small-scale
structures. Detail enhancement and noise reduction
with significant structure protection.

Processing Example

M101 CCD Color Image
ATrousWaveletTransform / LRGBCombination in PixInsight Standard

Raw M101 image data courtesy of Jim Misti

 Initial nonlinear transformation of the
luminance image with HistogramTransform.

Initial luminance nonlinear
transformation. HistogramTransform
working on the Real-Time Preview interface.

 Verifying the resulting histogram on a
preview defined to avoid spurious data.

Building a star protection mask with
ATrousWaveletTransform: k-sigma noise
thresholding and suppression of the residual
wavelet layer. This method isolates structures
within a prescribed range of dimensional
scales, independently of the noise.

Expanding the star protection mask with
a histogram stretch. This provides better
protection of small structures and facilitates a
subsequent wavelet transform.

Testing mask protection by enabling mask
visibility, once the mask has been activated for
the stretched luminance image.

Initial multiscale analysis using the wavelet layer preview
functionality of the ATrousWaveletTransform interface. By inspecting
individual wavelet layers, significant structures can be identified and a
wavelet processing strategy can be designed consistently.

Previewing significant structures for selected
wavelet layers allows fine-tuning parameters of the
integrated per-layer noise reduction algorithm.

Enhancing structures in selected wavelet layers. Each
wavelet layer isolates image structures within a given range of
dimensional scales. In the example, wavelet layers #2 and #3
(scales of 2 and 4 pixels) are being enhanced by increasing the
Bias parameter. ATrousWaveletTransform permits a precise
adaptation between layer bias and noise reduction parameters. It
also includes an efficient deringing algorithm.

Combining an LRGB image with the LRGBCombination process. Different combine ratios (weights)
can be specified for individual RGB channels. The luminance transfer function allows a precise
adaptation between luminance and chrominance data. The saturation transfer function permits
dramatic color saturation enhancements without affecting color balance (zero hue shifts).

Defining a strong color saturation increment with the LRGBCombination
process. In this figure, chrominance noise is clearly visible. This problem has
been perfectly fixed in our implementation, as the next slide demonstrates.

Applying chrominance noise reduction with the LRGBCombination process.
Our implementation includes a chrominance-specific, multiscale (wavelets-based)
noise reduction algorithm. This algorithm works in tandem with the saturation transfer
function. Compare with the previous slide.

Processed image after additional color balance and noise reduction.

Copyright © 2006 Pleiades Software

Image Authors
Luc Coiffier / Thomas W. Earle / Christopher Go /
José Luis Lamadrid / Carlos Milovic / Jim Misti / Vicent Peris

